Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Relatively rare root endophytic bacteria drive plant resource allocation patterns and tissue nutrient concentration in unpredictable ways.

Identifieur interne : 000735 ( Main/Exploration ); précédent : 000734; suivant : 000736

Relatively rare root endophytic bacteria drive plant resource allocation patterns and tissue nutrient concentration in unpredictable ways.

Auteurs : Jeremiah A. Henning [États-Unis] ; David J. Weston [États-Unis] ; Dale A. Pelletier [États-Unis] ; Collin M. Timm [États-Unis] ; Sara S. Jawdy [États-Unis] ; Aimée T. Classen [États-Unis]

Source :

RBID : pubmed:31657872

Descripteurs français

English descriptors

Abstract

PREMISE

Plant endophytic bacterial strains can influence plant traits such as leaf area and root length. Yet, the influence of more complex bacterial communities in regulating overall plant phenotype is less explored. Here, in two complementary experiments, we tested whether we can predict plant phenotype response to changes in microbial community composition.

METHODS

In the first study, we inoculated a single genotype of Populus deltoides with individual root endophytic bacteria and measured plant phenotype. Next, data from this single inoculation were used to predict phenotypic traits after mixed three-strain community inoculations, which we tested in the second experiment.

RESULTS

By itself, each bacterial endophyte significantly but weakly altered plant phenotype relative to noninoculated plants. In a mixture, bacterial strain Burkholderia BT03, constituted at least 98% of community relative abundance. Yet, plant resource allocation and tissue nutrient concentrations were disproportionately influenced by Pseudomonas sp. GM17, GM30, and GM41. We found a 10% increase in leaf mass fraction and an 11% decrease in root mass fraction when replacing Pseudomonas GM17 with GM41 in communities containing both Pseudomonas GM30 and Burkholderia BT03.

CONCLUSIONS

Our results indicate that interactions among endophytic bacteria may drive plant phenotype over the contribution of each strain individually. Additionally, we have shown that low-abundance strains contribute to plant phenotype challenging the assumption that the dominant strains will drive plant function.


DOI: 10.1002/ajb2.1373
PubMed: 31657872


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Relatively rare root endophytic bacteria drive plant resource allocation patterns and tissue nutrient concentration in unpredictable ways.</title>
<author>
<name sortKey="Henning, Jeremiah A" sort="Henning, Jeremiah A" uniqKey="Henning J" first="Jeremiah A" last="Henning">Jeremiah A. Henning</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996</wicri:regionArea>
<wicri:noRegion>37996</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Avenue, St. Paul, MN, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Avenue, St. Paul, MN, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weston, David J" sort="Weston, David J" uniqKey="Weston D" first="David J" last="Weston">David J. Weston</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pelletier, Dale A" sort="Pelletier, Dale A" uniqKey="Pelletier D" first="Dale A" last="Pelletier">Dale A. Pelletier</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Timm, Collin M" sort="Timm, Collin M" uniqKey="Timm C" first="Collin M" last="Timm">Collin M. Timm</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, 20723</wicri:regionArea>
<wicri:noRegion>20723</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jawdy, Sara S" sort="Jawdy, Sara S" uniqKey="Jawdy S" first="Sara S" last="Jawdy">Sara S. Jawdy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Classen, Aimee T" sort="Classen, Aimee T" uniqKey="Classen A" first="Aimée T" last="Classen">Aimée T. Classen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996</wicri:regionArea>
<wicri:noRegion>37996</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, VT, 05405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, VT, 05405</wicri:regionArea>
<wicri:noRegion>05405</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31657872</idno>
<idno type="pmid">31657872</idno>
<idno type="doi">10.1002/ajb2.1373</idno>
<idno type="wicri:Area/Main/Corpus">000645</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000645</idno>
<idno type="wicri:Area/Main/Curation">000645</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000645</idno>
<idno type="wicri:Area/Main/Exploration">000645</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Relatively rare root endophytic bacteria drive plant resource allocation patterns and tissue nutrient concentration in unpredictable ways.</title>
<author>
<name sortKey="Henning, Jeremiah A" sort="Henning, Jeremiah A" uniqKey="Henning J" first="Jeremiah A" last="Henning">Jeremiah A. Henning</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996</wicri:regionArea>
<wicri:noRegion>37996</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Avenue, St. Paul, MN, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Avenue, St. Paul, MN, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weston, David J" sort="Weston, David J" uniqKey="Weston D" first="David J" last="Weston">David J. Weston</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pelletier, Dale A" sort="Pelletier, Dale A" uniqKey="Pelletier D" first="Dale A" last="Pelletier">Dale A. Pelletier</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Timm, Collin M" sort="Timm, Collin M" uniqKey="Timm C" first="Collin M" last="Timm">Collin M. Timm</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, 20723</wicri:regionArea>
<wicri:noRegion>20723</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jawdy, Sara S" sort="Jawdy, Sara S" uniqKey="Jawdy S" first="Sara S" last="Jawdy">Sara S. Jawdy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Classen, Aimee T" sort="Classen, Aimee T" uniqKey="Classen A" first="Aimée T" last="Classen">Aimée T. Classen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996</wicri:regionArea>
<wicri:noRegion>37996</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, VT, 05405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, VT, 05405</wicri:regionArea>
<wicri:noRegion>05405</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">American journal of botany</title>
<idno type="eISSN">1537-2197</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (MeSH)</term>
<term>Endophytes (MeSH)</term>
<term>Nutrients (MeSH)</term>
<term>Plant Roots (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Resource Allocation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allocation des ressources (MeSH)</term>
<term>Bactéries (MeSH)</term>
<term>Endophytes (MeSH)</term>
<term>Nutriments (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Racines de plante (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bacteria</term>
<term>Endophytes</term>
<term>Nutrients</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Resource Allocation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allocation des ressources</term>
<term>Bactéries</term>
<term>Endophytes</term>
<term>Nutriments</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>PREMISE</b>
</p>
<p>Plant endophytic bacterial strains can influence plant traits such as leaf area and root length. Yet, the influence of more complex bacterial communities in regulating overall plant phenotype is less explored. Here, in two complementary experiments, we tested whether we can predict plant phenotype response to changes in microbial community composition.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>In the first study, we inoculated a single genotype of Populus deltoides with individual root endophytic bacteria and measured plant phenotype. Next, data from this single inoculation were used to predict phenotypic traits after mixed three-strain community inoculations, which we tested in the second experiment.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>By itself, each bacterial endophyte significantly but weakly altered plant phenotype relative to noninoculated plants. In a mixture, bacterial strain Burkholderia BT03, constituted at least 98% of community relative abundance. Yet, plant resource allocation and tissue nutrient concentrations were disproportionately influenced by Pseudomonas sp. GM17, GM30, and GM41. We found a 10% increase in leaf mass fraction and an 11% decrease in root mass fraction when replacing Pseudomonas GM17 with GM41 in communities containing both Pseudomonas GM30 and Burkholderia BT03.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our results indicate that interactions among endophytic bacteria may drive plant phenotype over the contribution of each strain individually. Additionally, we have shown that low-abundance strains contribute to plant phenotype challenging the assumption that the dominant strains will drive plant function.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">31657872</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1537-2197</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>106</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2019</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>American journal of botany</Title>
<ISOAbbreviation>Am J Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Relatively rare root endophytic bacteria drive plant resource allocation patterns and tissue nutrient concentration in unpredictable ways.</ArticleTitle>
<Pagination>
<MedlinePgn>1423-1434</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ajb2.1373</ELocationID>
<Abstract>
<AbstractText Label="PREMISE">Plant endophytic bacterial strains can influence plant traits such as leaf area and root length. Yet, the influence of more complex bacterial communities in regulating overall plant phenotype is less explored. Here, in two complementary experiments, we tested whether we can predict plant phenotype response to changes in microbial community composition.</AbstractText>
<AbstractText Label="METHODS">In the first study, we inoculated a single genotype of Populus deltoides with individual root endophytic bacteria and measured plant phenotype. Next, data from this single inoculation were used to predict phenotypic traits after mixed three-strain community inoculations, which we tested in the second experiment.</AbstractText>
<AbstractText Label="RESULTS">By itself, each bacterial endophyte significantly but weakly altered plant phenotype relative to noninoculated plants. In a mixture, bacterial strain Burkholderia BT03, constituted at least 98% of community relative abundance. Yet, plant resource allocation and tissue nutrient concentrations were disproportionately influenced by Pseudomonas sp. GM17, GM30, and GM41. We found a 10% increase in leaf mass fraction and an 11% decrease in root mass fraction when replacing Pseudomonas GM17 with GM41 in communities containing both Pseudomonas GM30 and Burkholderia BT03.</AbstractText>
<AbstractText Label="CONCLUSIONS">Our results indicate that interactions among endophytic bacteria may drive plant phenotype over the contribution of each strain individually. Additionally, we have shown that low-abundance strains contribute to plant phenotype challenging the assumption that the dominant strains will drive plant function.</AbstractText>
<CopyrightInformation>© 2019 Botanical Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Henning</LastName>
<ForeName>Jeremiah A</ForeName>
<Initials>JA</Initials>
<Identifier Source="ORCID">0000-0002-2214-4895</Identifier>
<AffiliationInfo>
<Affiliation>Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Avenue, St. Paul, MN, 55108, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weston</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pelletier</LastName>
<ForeName>Dale A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Timm</LastName>
<ForeName>Collin M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biosciences, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jawdy</LastName>
<ForeName>Sara S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Classen</LastName>
<ForeName>Aimée T</ForeName>
<Initials>AT</Initials>
<AffiliationInfo>
<Affiliation>Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, VT, 05405, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Office of Science</Agency>
<Country>International</Country>
</Grant>
<Grant>
<Agency>Biological and Environmental Research</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>DE-AC05-00OR22725</GrantID>
<Agency>U.S. Department of Energy</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>DE-SC0010562</GrantID>
<Agency>University of Tennessee</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Bot</MedlineTA>
<NlmUniqueID>0370467</NlmUniqueID>
<ISSNLinking>0002-9122</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060026" MajorTopicYN="Y">Endophytes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078622" MajorTopicYN="N">Nutrients</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="Y">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040841" MajorTopicYN="N">Resource Allocation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Burkholderia </Keyword>
<Keyword MajorTopicYN="Y">Populus deltoides </Keyword>
<Keyword MajorTopicYN="Y">Pseudomonas </Keyword>
<Keyword MajorTopicYN="Y">Salicaceae</Keyword>
<Keyword MajorTopicYN="Y">allocation</Keyword>
<Keyword MajorTopicYN="Y">bacterial endophytes</Keyword>
<Keyword MajorTopicYN="Y">constructed communities</Keyword>
<Keyword MajorTopicYN="Y">mass-ratio hypothesis</Keyword>
<Keyword MajorTopicYN="Y">plant traits</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31657872</ArticleId>
<ArticleId IdType="doi">10.1002/ajb2.1373</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>LITERATURE CITED</Title>
<Reference>
<Citation>Balvanera, P., C. Kremen, and M. Martínez-Ramos. 2005. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecological Applications 15: 360-375.</Citation>
</Reference>
<Reference>
<Citation>Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1-48.</Citation>
</Reference>
<Reference>
<Citation>Bílá, K., M. Moretti, F. Bello, A. T. C. Dias, G. B. Pezzatti, A. R. Van Oosten, and M. P. Berg. 2014. Disentangling community functional components in a litter-macrodetritivore model system reveals the predominance of the mass ratio hypothesis. Ecology and Evolution 4: 408-416.</Citation>
</Reference>
<Reference>
<Citation>Borer, E. T., A.-L. Laine, and E. W. Seabloom. 2016. A multiscale approach to plant disease using the metacommunity concept. Annual Review of Phytopathology 54: 397-418.</Citation>
</Reference>
<Reference>
<Citation>Brown, S. D., S. M. Utturkar, D. M. Klingeman, C. M. Johnson, S. L. Martin, M. L. Land, T.-Y. S. Lu, et al. 2012. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides. Journal of Bacteriology 194: 5991-5993.</Citation>
</Reference>
<Reference>
<Citation>Bulgarelli, D., M. Rott, K. Schlaeppi, E. V. L. van Themaat, N. Ahmadinejad, F. Assenza, P. Rauf, et al. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488: 91-95.</Citation>
</Reference>
<Reference>
<Citation>Cadotte, M. W. 2017. Functional traits explain ecosystem function through opposing mechanisms. Ecology Letters 20: 989-996.</Citation>
</Reference>
<Reference>
<Citation>Cárdenas, R. E., D. A. Donoso, A. Argoti, and O. Dangles. 2017. Functional consequences of realistic extinction scenarios in Amazonian soil food webs. Ecosphere 8: e01692.</Citation>
</Reference>
<Reference>
<Citation>Ceballos, G., and J. H. Brown. 1995. Global patterns of mammalian diversity, endemism, and endangerment. Conservation Biology 9: 559-568.</Citation>
</Reference>
<Reference>
<Citation>Costello, E. K., K. Stagaman, L. Dethlefsen, B. J. M. Bohannan, and D. A. Relman. 2012. The application of ecological theory toward an understanding of the human microbiome. Science 336: 1255-1262.</Citation>
</Reference>
<Reference>
<Citation>Dangles, O., and B. Malmqvist. 2004. Species richness-decomposition relationships depend on species dominance. Ecology Letters 7: 395-402.</Citation>
</Reference>
<Reference>
<Citation>Dayton, P. K. 1971. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecological Monographs 351-389.</Citation>
</Reference>
<Reference>
<Citation>De Boer, W., A.-M. Wagenaar, P. J. A. K. Gunnewiek, and J. A. Van Veen. 2007. In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria. FEMS Microbiology Ecology 59: 177-185.</Citation>
</Reference>
<Reference>
<Citation>Dray, S., and A.-B. Dufour. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1-20.</Citation>
</Reference>
<Reference>
<Citation>Ervin, G. N., and R. G. Wetzel. 2002. Influence of a dominant macrophyte, Juncus effusus, on wetland plant species richness, diversity, and community composition. Oecologia 130: 626-636.</Citation>
</Reference>
<Reference>
<Citation>Faith, J. J., P. P. Ahern, V. K. Ridaura, J. Cheng, and J. I. Gordon. 2014. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Science Translational Medicine 6: 220ra11.</Citation>
</Reference>
<Reference>
<Citation>Falony, G., M. Joossens, S. Vieira-Silva, J. Wang, Y. Darzi, K. Faust, A. Kurilshikov, et al. 2016. Population-level analysis of gut microbiome variation. Science 352: 560-564.</Citation>
</Reference>
<Reference>
<Citation>Fierer, N., S. Ferrenberg, G. E. Flores, A. González, J. Kueneman, T. Legg, R. C. Lynch, et al. 2012. From animalcules to an ecosystem: application of ecological concepts to the human microbiome. Annual Review of Ecology, Evolution, and Systematics 43: 137-155.</Citation>
</Reference>
<Reference>
<Citation>Foster, K. R., and T. Bell. 2012. Competition, not cooperation, dominates interactions among culturable microbial species. Current Biology 22: 1845-1850.</Citation>
</Reference>
<Reference>
<Citation>Friesen, M. L. 2013. Microbially mediated plant functional traits. molecular microbial ecology of the rhizosphere. In F. J. de Bruijn, Molecular microbial ecology of the rhizosphere, vol. 1, 1st ed., 87-102. Wiley Blackwell, Hoboken, NJ, USA.</Citation>
</Reference>
<Reference>
<Citation>Gerritsen, J., H. Smidt, G. T. Rijkers, and W. M. Vos. 2011. Intestinal microbiota in human health and disease: the impact of probiotics. Genes & Nutrition 6: 209.</Citation>
</Reference>
<Reference>
<Citation>Gilbert, J. A., R. A. Quinn, J. Debelius, Z. Z. Xu, J. Morton, N. Garg, J. K. Jansson, et al. 2016. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535: 94-103.</Citation>
</Reference>
<Reference>
<Citation>Gottel, N. R., H. F. Castro, M. Kerley, Z. Yang, D. A. Pelletier, M. Podar, T. Karpinets, et al. 2011. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Applied and Environmental Microbiology 77: 5934-5944.</Citation>
</Reference>
<Reference>
<Citation>Grime, J. P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86: 902-910.</Citation>
</Reference>
<Reference>
<Citation>Hamilton, C. E., J. D. Bever, J. Labbé, X. Yang, and H. Yin. 2016. Mitigating climate change through managing constructed-microbial communities in agriculture. Agriculture, Ecosystems & Environment 216: 304-308.</Citation>
</Reference>
<Reference>
<Citation>Hasim, S., D. P. Allison, B. Mendez, A. T. Farmer, D. A. Pelletier, S. T. Retterer, S. R. Campagna, et al. 2018. Elucidating duramycin's bacterial selectivity and mode of action on the bacterial cell envelope. Frontiers in Microbiology 9: 219.</Citation>
</Reference>
<Reference>
<Citation>Hedin, C. R., C. J. van der Gast, A. J. Stagg, J. O. Lindsay, and K. Whelan. 2017. The gut microbiota of siblings offers insights into microbial pathogenesis of inflammatory bowel disease. Gut Microbes 8: 359-365.</Citation>
</Reference>
<Reference>
<Citation>Henning, J. A., D. J. Weston, D. A. Pelletier, C. M. Timm, S. S. Jawdy, and A. T. Classen. 2016. Root bacterial endophytes alter plant phenotype, but not physiology. PeerJ 4: e2606.</Citation>
</Reference>
<Reference>
<Citation>Henning, J. A., D. J. Weston, D. A. Pelletier, C. M. Timm, S. S. Jawdy, and A. T. Classen. 2019. Data from: Relatively rare root endophytic bacteria drive plant resource allocation patterns and tissue nutrient concentration in unpredictable ways. Dryad Digital Repository. https://doi.org/10.5061/dryad.h9w0vt4d5.</Citation>
</Reference>
<Reference>
<Citation>Herrera Paredes, S., T. Gao, T. F. Law, O. M. Finkel, T. Mucyn, P. J. P. L. Teixeira, I. Salas González, et al. 2018. Design of synthetic bacterial communities for predictable plant phenotypes. PLOS Biology 16: e2003962.</Citation>
</Reference>
<Reference>
<Citation>Hird, S. M. 2019. Microbiomes, community ecology, and the comparative method. MSystems 4: e00112-19.</Citation>
</Reference>
<Reference>
<Citation>Hol, W. H., W. De Boer, A. J. Termorshuizen, K. M. Meyer, J. H. M. Schneider, N. M. Van Dam, J. A. Van Veen, and W. H. Van Der Putten. 2010. Reduction of rare soil microbes modifies plant-herbivore interactions. Ecology Letters 13: 292-301.</Citation>
</Reference>
<Reference>
<Citation>Hol, W. H. G., W. de Boer, M. de Hollander, E. E. Kuramae, A. Meisner, and W. H. van der Putten. 2015a. Context dependency and saturating effects of loss of rare soil microbes on plant productivity. Frontiers in Plant Science 6: 485.</Citation>
</Reference>
<Reference>
<Citation>Hol, W. H., P. Garbeva, C. Hordijk, M. P. J. Hundscheid, P. J. A. Gunnewiek, M. Van Agtmaal, E. E. Kuramae, and W. de Boer. 2015b. Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology 96: 2042-2048.</Citation>
</Reference>
<Reference>
<Citation>Hong, S. N., and P.-L. Rhee. 2014. Unraveling the ties between irritable bowel syndrome and intestinal microbiota. World Journal of Gastroenterology 20: 2470-2481.</Citation>
</Reference>
<Reference>
<Citation>Hussa, E. A., and H. Goodrich-Blair. 2013. It takes a village: ecological and fitness impacts of multipartite mutualism. Annual Review of Microbiology 67: 161-178.</Citation>
</Reference>
<Reference>
<Citation>Jousset, A., C. Bienhold, A. Chatzinotas, L. Gallien, A. Gobet, V. Kurm, K. Kusel, et al. 2017. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME Journal 11: 853-862.</Citation>
</Reference>
<Reference>
<Citation>Jun, S.-R., T. M. Wassenaar, I. Nookaew, L. Hauser, V. Wanchai, M. Land, C. M. Timm, et al. 2016. Diversity of Pseudomonas genomes, including Populus-associated isolates, as revealed by comparative genome analysis. Applied and Environmental Microbiology 82: 375-383.</Citation>
</Reference>
<Reference>
<Citation>Kemen, E. 2014. Microbe-microbe interactions determine oomycete and fungal host colonization. Current Opinion in Plant Biology 20: 75-81.</Citation>
</Reference>
<Reference>
<Citation>Konopka, A. 2009. What is microbial community ecology? ISME Journal 3: 1223.</Citation>
</Reference>
<Reference>
<Citation>Koskella, B., L. J. Hall, and C. J. E. Metcalf. 2017. The microbiome beyond the horizon of ecological and evolutionary theory. Nature Ecology & Evolution 1: 1606-1615.</Citation>
</Reference>
<Reference>
<Citation>Kusari, S., S. Singh, and C. Jayabaskaran. 2014. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends in Biotechnology 32: 297-303.</Citation>
</Reference>
<Reference>
<Citation>Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2017. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82: 1-26.</Citation>
</Reference>
<Reference>
<Citation>Labbé, J. L., D. J. Weston, N. Dunkirk, D. A. Pelletier, and G. A. Tuskan. 2014. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus. Frontiers in Plant Science 5: 579.</Citation>
</Reference>
<Reference>
<Citation>Larsen, T. H., N. M. Williams, and C. Kremen. 2005. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecology letters 8: 538-547.</Citation>
</Reference>
<Reference>
<Citation>Lau, J. A., and J. T. Lennon. 2012. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proceedings of the National Academy of Sciences, USA 109: 14058-14062.</Citation>
</Reference>
<Reference>
<Citation>Laughlin, D. C. 2014. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters 17: 771-784.</Citation>
</Reference>
<Reference>
<Citation>Lundberg, D. S., S. L. Lebeis, S. H. Paredes, S. Yourstone, J. Gehring, S. Malfatti, J. Tremblay, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488: 86-90.</Citation>
</Reference>
<Reference>
<Citation>Lynch, M. D. J., and J. D. Neufeld. 2015. Ecology and exploration of the rare biosphere. Nature Reviews Microbiology 13: 217-229.</Citation>
</Reference>
<Reference>
<Citation>Lyons, K. G., C. A. Brigham, B. H. Traut, and M. W. Schwartz. 2005. Rare species and ecosystem functioning. Conservation Biology 19: 1019-1024.</Citation>
</Reference>
<Reference>
<Citation>Mariotte, P. 2014. Do subordinate species punch above their weight? Evidence from above- and below-ground. New Phytologist 203: 16-21.</Citation>
</Reference>
<Reference>
<Citation>Marra, L. M., C. R. F. S. Soares, S. M. de Oliveira, P. A. A. Ferreira, B. L. Soares, R. de Fráguas Carvalho, J. M. de Lima, and F. M. de Souza Moreira. 2012. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant and Soil 357: 289-307.</Citation>
</Reference>
<Reference>
<Citation>Marsh, A. S., J. A. Arnone, B. T. Bormann, and J. C. Gordon. 2000. The role of Equisetum in nutrient cycling in an Alaskan shrub wetland. Journal of Ecology 88: 999-1011.</Citation>
</Reference>
<Reference>
<Citation>McShea, W. J., and J. H. Rappole. 1997. The science and politics of managing deer within a protected area. Wildlife Society Bulletin 25: 443-446.</Citation>
</Reference>
<Reference>
<Citation>Mihaljevic, J. R. 2012. Linking metacommunity theory and symbiont evolutionary ecology. Trends in Ecology & Evolution 27: 323-329.</Citation>
</Reference>
<Reference>
<Citation>Miller, E. T., R. Svanbäck, and B. J. M. Bohannan. 2018. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends in Ecology & Evolution 33: 926-935.</Citation>
</Reference>
<Reference>
<Citation>Mouillot, D., D. R. Bellwood, C. Baraloto, J. Chave, R. Galzin, M. Harmelin-Vivien, M. Kulbicki, et al. 2013. Rare species support vulnerable functions in high-diversity ecosystems. PLOS Biology 11: e1001569.</Citation>
</Reference>
<Reference>
<Citation>Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.</Citation>
</Reference>
<Reference>
<Citation>Nannipieri, P., J. Ascher, M. Ceccherini, L. Landi, G. Pietramellara, and G. Renella. 2003. Microbial diversity and soil functions. European Journal of Soil Science 54: 655-670.</Citation>
</Reference>
<Reference>
<Citation>Nemergut, D. R., E. K. Costello, M. Hamady, C. Lozupone, L. Jiang, S. K. Schmidt, N. Fierer, et al. 2011. Global patterns in the biogeography of bacterial taxa. Environmental Microbiology 13: 135-144.</Citation>
</Reference>
<Reference>
<Citation>Norberg, J. 2004. Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnology and Oceanography 49: 1269-1277.</Citation>
</Reference>
<Reference>
<Citation>Obadia, B., Z. T. Güvener, V. Zhang, J. A. Ceja-Navarro, E. L. Brodie, W. J. William, and W. B. Ludington. 2017. Probabilistic invasion underlies natural gut microbiome stability. Current Biology 27: 1999-2006.</Citation>
</Reference>
<Reference>
<Citation>Ofek-Lalzar, M., N. Sela, M. Goldman-Voronov, S. J. Green, Y. Hadar, and D. Minz. 2014. Niche and host-associated functional signatures of the root surface microbiome. Nature Communications 5: 4950.</Citation>
</Reference>
<Reference>
<Citation>Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L. Simpson, et al. 2015. vegan: community ecology package. R package vegan vers. 2.2-1. https://cran.r-project.org/web/packages/vegan/index.html.</Citation>
</Reference>
<Reference>
<Citation>Orphan, V. J. 2009. Methods for unveiling cryptic microbial partnerships in nature. Current Opinion in Microbiology 12: 231-237.</Citation>
</Reference>
<Reference>
<Citation>O'Sullivan, D. J., and F. O'Gara. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiology and Molecular Biology Reviews 56: 662-676.</Citation>
</Reference>
<Reference>
<Citation>Overvoorde, P., H. Fukaki, and T. Beeckman. 2010. Auxin control of root development. Cold Spring Harbor Perspectives in Biology 2: a001537.</Citation>
</Reference>
<Reference>
<Citation>Pande, K., C. Chen, and S. M. Noble. 2013. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nature Genetics 45: 1088-1091.</Citation>
</Reference>
<Reference>
<Citation>Parkinson, J. A., and S. E. Allen. 1975. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Communications in Soil Science & Plant Analysis 6: 1-11.</Citation>
</Reference>
<Reference>
<Citation>Patten, C. L., and B. R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied Environmental Microbiology 68: 3795-3801.</Citation>
</Reference>
<Reference>
<Citation>Peltzer, D. A., P. J. Bellingham, H. Kurokawa, L. R. Walker, D. A. Wardle, and G. W. Yeates. 2009. Punching above their weight: low-biomass non-native plant species alter soil properties during primary succession. Oikos 118: 1001-1014.</Citation>
</Reference>
<Reference>
<Citation>Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry, M. S. Bret-Harte, et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234.</Citation>
</Reference>
<Reference>
<Citation>Poole, K., and G. A. McKay. 2003. Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Frontiers in Bioscience 8: 661-686.</Citation>
</Reference>
<Reference>
<Citation>R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/.</Citation>
</Reference>
<Reference>
<Citation>RStudio Team. 2019. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. Available at http://www.rstudio.com/.</Citation>
</Reference>
<Reference>
<Citation>Robinson, C. J., B. J. M. Bohannan, and V. B. Young. 2010. From structure to function: the ecology of host-associated microbial communities. Microbiology and Molecular Biology Reviews 74: 453-476.</Citation>
</Reference>
<Reference>
<Citation>Rolig, A. S., R. Parthasarathy, A. R. Burns, B. J. M. Bohannan, and K. Guillemin. 2015. Individual members of the microbiota disproportionately modulate host innate immune responses. Cell Host & Microbe 18: 613-620.</Citation>
</Reference>
<Reference>
<Citation>Rousk, J., P. C. Brookes, and E. Bååth. 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied Environmental Microbiology 75: 1589-1596.</Citation>
</Reference>
<Reference>
<Citation>Ryu, C.-M., M. Farag, C.-H. Hu, M. Reddy, and H.-X. Wie. 2003. Bacterial volatiles promote growth of Arabidopsis. Proceedings of the National Academy of Sciences, USA 100: 4927.</Citation>
</Reference>
<Reference>
<Citation>Seabloom, E. W., E. T. Borer, K. Gross, A. E. Kendig, C. Lacroix, C. E. Mitchell, E. A. Mordecai, and A. G. Power. 2015. The community ecology of pathogens: coinfection, coexistence and community composition. Ecology Letters 18: 401-415.</Citation>
</Reference>
<Reference>
<Citation>Shade, A., S. E. Jones, J. G. Caporaso, J. Handelsman, R. Knight, N. Fierer, and J. A. Gilbert. 2014. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 5: e01371-14.</Citation>
</Reference>
<Reference>
<Citation>Shelton, A. L., J. A. Henning, P. Schultz, and K. Clay. 2014. Effects of abundant white-tailed deer on vegetation, animals, mycorrhizal fungi, and soils. Forest Ecology and Management 320: 39-49.</Citation>
</Reference>
<Reference>
<Citation>Smith, M. D., and A. K. Knapp. 2003. Dominant species maintain ecosystem function with non-random species loss. Ecology Letters 6: 509-517.</Citation>
</Reference>
<Reference>
<Citation>Sogin, M. L., H. G. Morrison, J. A. Huber, D. Mark Welch, S. M. Huse, P. R. Neal, J. M. Arrieta, and G. J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proceedings of the National Academy of Sciences, USA 103: 12115-12120.</Citation>
</Reference>
<Reference>
<Citation>Timm, C. M., A. G. Campbell, S. M. Utturkar, S. R. Jun, R. E. Parales, W. Tan, M. S. Robeson, et al. 2015. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment. Frontiers in Microbiology 6: 1118.</Citation>
</Reference>
<Reference>
<Citation>Timm, C. M., D. A. Pelletier, S. S. Jawdy, L. E. Gunter, J. A. Henning, N. Engle, J. Aufrecht, et al. 2016. Two poplar-associated bacterial isolates induce additive favorable responses in a constructed plant-microbiome system. Frontiers in Plant Science 7: 497.</Citation>
</Reference>
<Reference>
<Citation>Timmusk, S., and E. G. H. Wagner. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Molecular Plant-Microbe Interactions 12: 951-959.</Citation>
</Reference>
<Reference>
<Citation>Uroz, S., Y. Dessaux, and P. Oger. 2009. Quorum sensing and quorum quenching: the yin and yang of bacterial communication. ChemBioChem 10: 205-216.</Citation>
</Reference>
<Reference>
<Citation>van Elsas, J. D., M. Chiurazzi, C. A. Mallon, D. Elhottovā, V. Krištůfek, and J. F. Salles. 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences, USA 109: 1159-1164.</Citation>
</Reference>
<Reference>
<Citation>Verhagen, B. W. M., J. Glazebrook, T. Zhu, H.-S. Chang, L. C. van Loon, and C. M. J. Pieterse. 2004. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions 17: 895-908.</Citation>
</Reference>
<Reference>
<Citation>Vivant, A.-L., D. Garmyn, P.-A. Maron, V. Nowak, and P. Piveteau. 2013. Microbial diversity and structure are drivers of the biological barrier effect against Listeria monocytogenes in soil. PLoS One 8: e76991.</Citation>
</Reference>
<Reference>
<Citation>Wagner, M. R., D. S. Lundberg, D. Coleman-Derr, S. G. Tringe, J. L. Dangl, and T. Mitchell-Olds. 2014. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters 17: 717-726.</Citation>
</Reference>
<Reference>
<Citation>Walker, V., C. Bertrand, F. Bellvert, Y. Moënne-Loccoz, R. Bally, and G. Comte. 2011. Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytologist 189: 494-506.</Citation>
</Reference>
<Reference>
<Citation>Wege, S., G. A. Khan, J.-Y. Jung, E. Vogiatzaki, S. Pradervand, I. Aller, A. J. Meyer, and Y. Poirier. 2016. The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via a root-to-shoot signal. Plant Physiology 170: 385-400.</Citation>
</Reference>
<Reference>
<Citation>Weston, D. J., D. A. Pelletier, J. L. Morrell-Falvey, T. J. Tschaplinski, S. S. Jawdy, T.-Y. Lu, S. M. Allen, et al. 2012. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism, photosynthesis, and fitness. Molecular Plant-Microbe Interactions 25: 765-778.</Citation>
</Reference>
<Reference>
<Citation>Wuertz, D., T. Setz, and Y. Chalabi. 2017. fBasics: Rmetrics - Markets and Basic Statistics. R package version 3042.89. Available at https://CRAN.R-project.org/package=fBasics.</Citation>
</Reference>
<Reference>
<Citation>Zamioudis, C., P. Mastranesti, P. Dhonukshe, I. Blilou, and C. M. J. Pieterse. 2013. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiology 162: 304-318.</Citation>
</Reference>
<Reference>
<Citation>Zavaleta, E. S., and K. B. Hulvey. 2004. Realistic species losses disproportionately reduce grassland resistance to biological invaders. Science 306: 1175-1177.</Citation>
</Reference>
<Reference>
<Citation>Ziegler, M., V. M. Eguíluz, C. M. Duarte, and C. R. Voolstra. 2018. Rare symbionts may contribute to the resilience of coral-algal assemblages. ISME Journal 12: 161.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Henning, Jeremiah A" sort="Henning, Jeremiah A" uniqKey="Henning J" first="Jeremiah A" last="Henning">Jeremiah A. Henning</name>
</noRegion>
<name sortKey="Classen, Aimee T" sort="Classen, Aimee T" uniqKey="Classen A" first="Aimée T" last="Classen">Aimée T. Classen</name>
<name sortKey="Classen, Aimee T" sort="Classen, Aimee T" uniqKey="Classen A" first="Aimée T" last="Classen">Aimée T. Classen</name>
<name sortKey="Henning, Jeremiah A" sort="Henning, Jeremiah A" uniqKey="Henning J" first="Jeremiah A" last="Henning">Jeremiah A. Henning</name>
<name sortKey="Jawdy, Sara S" sort="Jawdy, Sara S" uniqKey="Jawdy S" first="Sara S" last="Jawdy">Sara S. Jawdy</name>
<name sortKey="Pelletier, Dale A" sort="Pelletier, Dale A" uniqKey="Pelletier D" first="Dale A" last="Pelletier">Dale A. Pelletier</name>
<name sortKey="Timm, Collin M" sort="Timm, Collin M" uniqKey="Timm C" first="Collin M" last="Timm">Collin M. Timm</name>
<name sortKey="Timm, Collin M" sort="Timm, Collin M" uniqKey="Timm C" first="Collin M" last="Timm">Collin M. Timm</name>
<name sortKey="Weston, David J" sort="Weston, David J" uniqKey="Weston D" first="David J" last="Weston">David J. Weston</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000735 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000735 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31657872
   |texte=   Relatively rare root endophytic bacteria drive plant resource allocation patterns and tissue nutrient concentration in unpredictable ways.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31657872" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020